lunes, 2 de junio de 2014

cuarto parcial matematicas


MEDIDAS DE TENDENCIA CENTRAL


Media:
En matemáticas y estadística una media o promedio es una medida de tendencia central que según la Real Academia Española (2001) «[…] resulta al efectuar una serie determinada de operaciones con un conjunto de números y que, en determinadas condiciones, puede representar por sí solo a todo el conjunto». Existen distintos tipos de medias, tales como la media geométrica, la media ponderada y la media armónica aunque en el lenguaje común, el término se refiere generalmente a la media aritmética.
La media aritmética es un promedio estándar que a menudo se denomina "promedio".
 \bar{x} = \frac{1}{n} \sum_{i=1}^n{x_i}
La media se confunde a veces con la mediana o moda. La media aritmética es el promedio de un conjunto de valores, o su distribución; sin embargo, para las distribuciones con sesgo, la media no es necesariamente el mismo valor que la mediana o que la moda. La media, moda y mediana son parámetros característicos de una distribución de probabilidad. Es a veces una forma de medir el sesgo de una distribución tal y como se puede hacer en las distribuciones exponencial y de Poisson.
Por ejemplo, la media aritmética de 34, 27, 45, 55, 22, 34 (seis valores) es 
  \tfrac{34+27+45+55+22+34}{6}\ = \tfrac{217}{6}\approx 36,167
Media ponderada:
La media ponderada es una medida de tendencia central, que es apropiada cuando en un conjunto de datos cada uno de ellos tiene una importancia relativa (o peso) respecto de los demás datos. Se obtiene multiplicando cada uno de los datos por su ponderación o peso y luego sumarlos, para obtener una suma ponderada. A continuación se divide la suma ponderada entre la suma de los pesos, dando como resultado la media ponderada.1
Para una serie de datos no vacía
X = \{ x_1, x_2, x_3..., x_n \} \,
a la que corresponden los pesos
 W = \{ w_1, w_2, ..., w_n \} \,
la media ponderada se calcula de la siguiente manera

\bar{x} = \frac{ \sum_{i=1}^n x_i w_i }{\sum_{i=1}^n w_i} = \frac{ x_1 w_1  + x_2 w_2  + x_3 w_3 + ... + x_n w_n }{w_1 + w_2 + w_3 + ... + w_n}
Problema:
Se puede usar una media ponderada para calcular la nota final de un curso, en donde se asigna distinta importancia (peso) a los distintos exámenes que se realicen.
Por ejemplo, si las dos primeras pruebas tienen un peso de 30% y 20% respectivamente, mientras que la última prueba tiene un peso de 50% y las calificaciones respectivas son de 6.4, 9.2, 8.1 entonces la nota final corresponde a la siguiente media ponderada:
Datos: X = \{6.4, 9.2, 8.1\} \,
Pesos: W = \{0.30, 0.20, 0.50\} \,
Media Ponderada: \bar{x} = \frac{6.4\cdot 0.30 + 9.2\cdot 0.20 + 8.1\cdot 0.50}{0.30+0.20+0.50}= 7.81\,

Media Geometrica:
En matemáticas y estadística, la media geométrica de una cantidad arbitraria de números (por decir n números) es laraíz n-ésima del producto de todos los números, es recomendada para datos de progresión geométrica, para promediar razones, interés compuesto y números índices.
 \bar{x} = 
\sqrt[n]{\prod_{i=1}^n{x_i}} =
\sqrt[n]{x_1 \cdot x_2 \cdots x_n}
Por ejemplo, la media geométrica de 2 y 18 es

\sqrt[2]{2 \cdot 18} = \sqrt[2]{36} = 6
Otro ejemplo, la media de 1, 3 y 9 sería

\sqrt[3]{1 \cdot 3 \cdot 9} = \sqrt[3]{27} = 3
·         El logaritmo de la media geométrica es igual a la media aritmética de los logaritmos de los valores de la variable.
·         La media geométrica de un conjunto de números positivos es siempre menor o igual que la media artimética:
(x_1 x_2 \dots x_n)^{\frac{1}{n}} \le \frac{x_1+ x_2 +\dots + x_n}{n}
La igualdad sólo se alcanza si .x_1 = x_2 = \dots = x_n
Ejemplo:
Una cadena de expendedores de gasolina el año pasado aumentó sus ingresos respecto al año anterior en 21%; y han proyectado que este año van a llegar a un aumento de 28% con respecto al año pasado. ¿Cuánto es el promedio anual del aumento porcentual?
Definitivamente no es (21% + 28%):2 = 24,5%.
El monto de la producción, al final de dos años, es 100(1,21)(1,28)= 154,88. Si en cada año se tuviera una tasa anual de aumento de i% resulta
100 → 100(1+i) → 100(1 +i)2.
Entonces
100(1 +i)2 = 154,88
(1 +i)2 = 1,5488
1 + i = \sqrt{1,5488}  =1,244507
i = 0,244507 = 24,451% 1

Media Armónica:
La media armónica', denominada H, de una cantidad finita de números es igual al recíproco, o inverso, de la media aritmética de los recíprocos de dichos valores y es recomendada para promediar velocidades.
Así, dados n números x1, x2, ... , xn la media armónica será igual a:
{H} = {n \over { \sum_{i=1}^n{1 \over x_i}}} = {n \over ({1 \over x_1}+\cdots+{1 \over x_n})}
La media armónica resulta poco influida por la existencia de determinados valores mucho más grandes que el conjunto de los otros, siendo en cambio sensible a valores mucho más pequeños que el conjunto.
La media armónica no está definida en el caso de que exista algún valor nulo.
1.    La inversa de la media armónica es la media aritmética de los inversos de los valores de la variable.
2.    Siempre se puede pasar de una media armónica a una media aritmética transformando adecuadamente los datos.
3.    La media armónica siempre es menor o igual que la media aritmética, ya que para cualesquiera números reales positivos :\scriptstyle x_i >0

Mediana:
En el ámbito de la estadística, la mediana representa el valor de la variable de posición central en un conjunto de datos ordenados.
Existen dos métodos para el cálculo de la mediana:
1.    Considerando los datos en forma individual, sin agruparlos.
2.    Utilizando los datos agrupados en intervalos de clase.
A continuación veamos cada una de ellas.
Datos sin agrupar
Sean x_1,x_2,x_3,\ldots,x_n  los datos de una muestra ordenada en orden creciente y designando la mediana como M_e , distinguimos dos casos:

a) Si n es impar, la mediana es el valor que ocupa la posición (n+1)/2 una vez que los datos han sido ordenados (en orden creciente o decreciente), porque éste es el valor central. Es decir: M_e=x_{(n+1)/2}.
Por ejemplo, si tenemos 5 datos, que ordenados son: x_1 = 3,x_2 = 6 ,x_3 = 7 ,x_4 = 8 ,x_5 = 9  => El valor central es el tercero: x_{(5+1)/2} = x_3 = 7. Este valor, que es la mediana de ese conjunto de datos, deja dos datos por debajo (x_1,x_2 ) y otros dos por encima de él (x_4x_5).
b) Si n es par, la mediana es la media aritmética de los dos valores centrales. Cuando n es par, los dos datos que están en el centro de la muestra ocupan las posiciones n/2 y n/2+1. Es decir: M_e = (x_{\frac{n}{2}} + x_{{\frac{n}{2}}+1})/2.
Por ejemplo, si tenemos 6 datos, que ordenados son: x_1 = 3x_2 = 6x_3 = 7x_4 = 8x_5 = 9x_6 = 10 => Hay dos valores que están por debajo del x_{\frac {6} {2}} = x_3 = 7 y otros dos que quedan por encima del siguiente dato x_{{\frac {6} {2}}+1} = x_4 = 8. Por tanto, la mediana de este grupo de datos es la media aritmética de estos dos datos: M_e = \frac {x_3 + x_4}{2} = \frac {7 + 8} {2}=7,5.


Datos agrupados
Al tratar con datos agrupados, si  {{\frac {n} {2}}}  coincide con el valor de una frecuencia acumulada, el valor de la mediana coincidirá con la abscisa correspondiente. Si no coincide con el valor de ninguna abcisa, se calcula a través de semejanza de triángulos en el histograma o polígono de frecuencias acumuladas, utilizando la siguiente equivalencia:
\frac{N_i-N_{i-1} }{a_i-a_{i-1} }=\frac{\frac{n}{2}-N_{i-1} }{p}\Rightarrow p=\frac{\frac{n}{2}-N_{i-1} }{N_i-N_{i-1} }(a_i-a_{i-1})
Donde N_{i} y N_{i-1} son las frecuencias absolutas acumuladas tales que N_{i-1} < {{\frac {n} {2}}} < N_{i}a_{i-1} y a_{i} son los extremos, interior y exterior, del intervalo donde se alcanza la mediana y M_e=a_{i-1}+p es la abscisa a calcular, la mediana. Se observa que a_{i} - a_{i-1} es la amplitud de los intervalos seleccionados para el diagrama.
Ejemplo 1: Cantidad (N) impar de datos
xi
fi
Ni
1
2
2
2
2
4
3
4
8
4
5
13
5
8
21 > 19.5
6
9
30
7
3
33
8
4
37
9
2
39
Las calificaciones en la asignatura de Matemáticas de 39 alumnos de una clase viene dada por la siguiente tabla:
Calificaciones
1
2
3
4
5
6
7
8
9
Número de alumnos
2
2
4
5
8
9
3
4
2
Primero se hallan las frecuencias absolutas acumuladasN_i . Así, aplicando la formula asociada a la mediana para n impar, se obtiene X (39+1) / 2 = X 20 .
·         Ni-1< n/2 < Ni = N19 < 19.5 < N20
Por tanto la mediana será el valor de la variable que ocupe el vigésimo lugar.En este ejemplo, 21 (frecuencia absoluta acumulada para Xi = 5) > 19.5 con lo que Me = 5 puntos, la mitad de la clase ha obtenido un 5 o menos, y la otra mitad un 5 o más.
Ejemplo 2 : Cantidad (N) par de datos
Las calificaciones en la asignatura de Matemáticas de 38 alumnos de una clase viene dada por la siguiente tabla (debajo):
Calificaciones
1
2
3
4
5
6
7
8
9
Número de alumnos
2
2
4
5
6
9
4
4
2
xi
fi
Ni+w
1
2
2
2
2
4
3
4
8
4
5
13
5
6
19 = 19
6
9
28
7
4
32
8
4
36
9
2
38
Primero se hallan las frecuencias absolutas acumuladas . Así, aplicando la fórmula asociada a la mediana para n par, se obtiene Formula:  X = n/2 ==> X =(38 / 2) => X =19  (Donde n= 38 alumnos divididos entre dos).
·         Ni-1< n/2 < Ni = N18 < 19 < N19
Con lo cual la mediana será la media aritmética de los valores de la variable que ocupen el decimonoveno y el vigésimo lugar. En el ejemplo el lugar decimonoveno lo ocupa el 5 y el vigésimo el 6 con lo que Me = (5+6)/2 = 5,5 puntos, la mitad de la clase ha obtenido un 5,5 o menos y la otra mitad un 5,5 o más.
Ejemplo para datos agrupados
Entre 1.50 y 1.60 hay 2 estudiantes.
Entre 1.60 y 1.70 hay 5 estudiantes.
Entre 1.70 y 1.80 hay 3 estudiantes.

Mediana= 1.60 + \left( \frac{(10/2)-2}{5} \right)0.1=1.66
Método de cálculo general
xi
fi
Ni
[x11-x12]
f1
N1
.
.
.
.
.
.
.
.
N(i-2)
[x(i-1)1-x(i-1)2]
f(i-1)
f(i-1)-N(i-2)=N(i-1)
[xi1-xi2]
fi
fi-Ni-1=Ni
[x(i+1)1-x(i+2)2]
f(i+1)
f(i+1)-Ni=N(i+1)
.
.
.
.
.
.
.
.
.
[xM1-xM2]
fM
fM-N(M-1)=NM
Consideramos:
- x11 valor mínimo< Entonces:
 Mediana= x_{i1} + \left( \cfrac{(N_M/2)-N_{i-1}}{f_i} \right).(x_{i2}-x_{i1})
Moda:
En estadística, la moda es el valor con una mayor frecuencia en una distribución de datos.
Hablaremos de una distribución bimodal de los datos adquiridos en una columna cuando encontremos dos modas, es decir, dos datos que tengan la misma frecuencia absoluta máxima. Una distribución trimodal de los datos es en la que encontramos tres modas. Si todas las variables tienen la misma frecuencia diremos que no hay moda.
El intervalo modal es el de mayor frecuencia absoluta. Cuando tratamos con datos agrupados antes de definir la moda, se ha de definir el intervalo modal.
La moda, cuando los datos están agrupados, es un punto que divide al intervalo modal en dos partes de la forma p y c-p, siendo c la amplitud del intervalo, que verifiquen que:
\frac{p}{c-p}=\frac{n_i-n_{i-1} }{n_i-n_{i+1} }
Siendo la frecuencia absoluta del intervalo modal las frecuencias absolutas de los intervalos anterior y posterior, respectivamente, al intervalo modal.
\gamma n_{i-1} \gamma n_{i+1}
Para obtener la moda en datos agrupados se usa la siguiente fórmula:
M = L_{i} + \left( \frac{D_1}{D_1+D_2} \right)A_{i}
Donde:
L_{i} = L-inferior de la clase modal.
D_1 = es el delta de frecuencia absoluta modal y la frecuencia absoluta premodal.
D_2 = es el delta de frecuencia absoluta modal y la frecuencia absoluta postmodal.
A_{i} = Amplitud del intervalo modal

MEDIDAS DE DISPERCIÓN
Las medidas de dispersión, también llamadas medidas de variabilidad, muestran la variabilidad de una distribución, indicando por medio de un número, si las diferentes puntuaciones de una variable están muy alejadas de la media. Cuánto mayor sea ese valor, mayor será la variabilidad, cuanto menor sea, más homogénea será a lamedia. Así se sabe si todos los casos son parecidos o varían mucho entre ellos.
Para calcular la variabilidad que una distribución tiene respecto de su media, se calcula la media de las desviaciones de las puntuaciones respecto a la media aritmética. Pero la suma de las desviaciones es siempre cero, así que se adoptan dos clases de estrategias para salvar este problema. Una es tomando las desviaciones en valor absoluto (desviación media) y otra es tomando las desviaciones al cuadrado (varianza).
Rango Estadistico
El rango o recorrido intercuartílico es la diferencia entre el valor máximo y el valor mínimo en un grupo de números aleatorios. Se le suele simbolizar con R.
Requisitos del rango
·         Ordenamos los números según su tamaño.
·         Restamos el valor mínimo del valor máximo
Rango = {(Max - Min)}
Ejemplo
Para la muestra (8, 7, 6, 9, 4, 5), el dato menor es 4 y el dato mayor es 9. Sus valores se encuentran en un rango de:
Rango = (9-4) = 5
Medio rango o Rango medio
El medio rango o rango medio de un conjunto de valores numéricos es la media del mayor y menor valor, o la tercera parte del camino entre el dato de menor valor y el dato de mayor valor. En consecuencia, el medio rango es:
medioRango = \frac{\ (Max + Min)}{2}

Ejemplo

Para una muestra de valores (3, 3, 5, 6, 8), el dato de menor valor Min= 3 y el dato de mayor valor Max= 8. El medio rango resolviéndolo mediante la correspondiente fórmula sería:
medioRango = \frac{\ (8 + 3)}{2} = 5.5
Representación del medio rango:  Medio rango.jpg
Varianza
La varianza es una medida estadística que mide la dispersión de los valores respecto a un valor central (media), es decir, es el cuadrado de las desviaciones: S_X^2 = \frac{\sum_{i=1}^n (X_i - \bar{X})^2}{n-1}
S_X^2 = \frac{1}{n-1}\sum_{i=1}^n (X_i - \bar{X})^2
Propiedades
  • La varianza es siempre positiva o 0: V_{X}^2 \geq 0
  • Si a los datos de la distribución les sumamos una cantidad constante la varianza no se modifica.
Y_i = X_i + k1 c S_Y^2 = \frac{\sum (Y_i - \bar{Y})^2}{n} = \frac{\sum [(X_i + k) - (\bar{X} + k)]^2}{n} = \frac{\sum (X_i + k - \bar{X} - k)^2}{n} = \frac{\sum (X_i - \bar{X})^2}{n} = S_X^2
  • Si a los datos de la distribución los multiplicamos una constante, la varianza queda multiplicada por el cuadrado de esa constante.
Y_i = X_i \cdot k
S_Y^2 = \frac{\sum (Y_i - \bar{Y})^2}{n} = \frac{\sum (X_i \cdot k - \bar{X} \cdot k)^2}{n} = \frac{\sum [k \cdot (X_i - \bar{X})]^2}{n} = \frac{\sum [k^2 \cdot (X_i - \bar{X})^2]}{n} = k^2 \cdot \frac{\sum (X_i - \bar{X})^2}{n} = k^2 \cdot S_X^2
  • Propiedad distributiva: V(X + Y) = V(X) + V(Y) - cov (X,Y)
Desviación típica
La varianza a veces no se interpreta claramente, ya que se mide en unidades cuadráticas. Para evitar ese problema se define otra medida de dispersión, que es ladesviación típica, o desviación estándar, que se halla como la raíz cuadrada positiva de la varianza. La desviación típica informa sobre la dispersión de los datos respecto al valor de la media; cuanto mayor sea su valor, más dispersos estarán los datos. Esta medida viene representada en la mayoría de los casos por S, dado que es su inicial de su nominación en inglés.
Desviación típica muestral
S = \sqrt{\frac{\sum_{i=1}^n (x_i - \bar{x})^2}{n}}
Desviación típica poblacional
\sigma = \sqrt{\frac{\sum_{i=1}^n fi (X_i - \mu)^2}{n}}
-->x = [17 14 2 5 8 7 6 8 5 4 3 15 9]
x = 17. 14. 2. 5. 8. 7. 6. 8. 5. 4. 3. 15. 9.
-->stdev(x)
ans = 4.716311
-->
Primero hemos declarado un vector con nombre X, donde introduzco los números de la serie. Luego con el comando stdev se hallará la desviación típica.
Covarianza
La covarianza entre dos variables es un estadístico resumen indicador de si las puntuaciones están relacionadas entre sí. La formulación clásica, se simboliza por la letra griega sigma (σ) cuando ha sido calculada en la población. Si se obtiene sobre una muestra, se designa por la letra "s_{xy}".
La fórmula suele aparecer expresada como:
\hat{S}_{xy} = \frac{\sum_{i=1}^n x_i y_i}{n-1} = \frac{\sum_{i=1}^n (X_i - \bar{X})(Y_i - \bar{Y})}{n-1}
Este tipo de estadístico puede utilizarse para medir el grado de relación de dos variables si ambas utilizan una escala de medida a nivel de intervalo/razón (variables cuantitativas).
La expresión se resuelve promediando el producto de las puntuaciones diferenciales por su tamaño muestral (n pares de puntuaciones, n-1 en su forma insesgada).
Este estadístico, refleja la relación lineal que existe entre dos variables. El resultado numérico fluctúa entre los rangos de +infinito a -infinito. Al no tener unos límites establecidos no puede determinarse el grado de relación lineal que existe entre las dos variables, solo es posible ver la tendencia.
  • -\infty \leq S_{xy} \leq +\infty
  • S_{xy} = \begin{cases} > 0, & \mbox{Correlaci}\acute{o}\mbox{n directa. Recta de regresi}\acute{o}\mbox{n creciente.} \\
                               = 0, & \mbox{No hay correlaci}\acute{o}\mbox{n.} \\
                               < 0. & \mbox{Correlaci}\acute{o}\mbox{n inversa. Recta de regresi}\acute{o}\mbox{n decreciente.}
                 \end{cases}
Coeficiente de Correlación de Pearson
El coeficiente de correlación de Pearson, r, permite saber si el ajuste de la nube de puntos a la recta de regresión obtenida es satisfactorio. Se define como el cociente entre la covarianza y el producto de las desviaciones típicas (raíz cuadrada de las varianzas).
r = \frac{V_{xy}}{\sqrt{V_x V_y}} = \frac{S_{xy}}{\sqrt{S_x^2 S_y^2}} = \frac{S_{xy}}{S_x S_y}
Teniendo en cuenta el valor de la covarianza y las varianzas, se puede evaluar mediante cualquiera de las dos expresiones siguientes:
Ejemplo Para una muestra de valores (3, 3, 5, 6, 8), el dato de menor valor Min= 3 y el dato de mayor valor Max= 8. El medio rango resolviéndolo mediante la correspondiente fórmula sería: 
 r = \frac{\frac{\sum x_i y_i}{n} - \bar{x}\bar{y}}
{\sqrt{\left(\frac{\sum x_i^2}{n} - \bar{x}^{2}\right)
\left(\frac{\sum y_i^2}{n} - \bar{y}^{2}\right)}}
r = \frac{n\sum x_i y_i - \sum x_i \sum y_i}
{\sqrt{\left[n\sum x_i^2 - \left(\sum x_i\right)^2\right]
\left[n\sum y_i^2 - \left(\sum y_i\right)^2\right]}}
Propiedades
·         El coeficiente de correlación, r, presenta valores entre –1 y +1.
·         Cuando r es próximo a 0, no hay correlación lineal entre las variables. La nube de puntos está muy dispersa o bien no forma una línea recta. No se puede trazar una recta de regresión.
·         Cuando r es cercano a +1, hay una buena correlación positiva entre las variables según un modelo lineal y la recta de regresión que se determine tendrá pendiente positiva, será creciente.
·         Cuando r es cercano a -1, hay una buena correlación negativa entre las variables según un modelo lineal y la recta de regresión que se determine tendrá pendiente negativa: es decreciente.es
ESTADÍSTICA
La estadística es una ciencia formal y una herramienta que estudia el uso y los análisis provenientes de una muestra representativa de datos, busca explicar las correlaciones y dependencias de un fenómeno físico o natural, de ocurrencia en forma aleatoria o condicional.
Sin embargo, la estadística es más que eso, es decir, es la herramienta fundamental que permite llevar a cabo el proceso relacionado con la investigación científica.
Distribución normal
Es transversal a una amplia variedad de disciplinas, desde la física hasta las ciencias sociales, desde las ciencias de la salud hasta el control de calidad.
Se usa para la toma de decisiones en áreas de negocios o instituciones gubernamentales.
La estadística se divide en dos grandes áreas:
  • La estadística descriptiva, se dedica a la descripción, visualización y resumen de datos originados a partir de los fenómenos de estudio. Los datos pueden ser resumidos numérica o gráficamente. Ejemplos básicos de parámetros estadísticos son: la media y la desviación estándar. Algunos ejemplos gráficos son: histograma, pirámide poblacional, gráfico circular, entre otros.
  • La estadística inferencial, se dedica a la generación de los modelos, inferencias y predicciones asociadas a los fenómenos en cuestión teniendo en cuenta la aleatoriedad de las observaciones. Se usa para modelar patrones en los datos y extraer inferencias acerca de la población bajo estudio. Estas inferencias pueden tomar la forma de respuestas a preguntas sí/no (prueba de hipótesis), estimaciones de unas características numéricas (estimación), pronósticos de futuras observaciones, descripciones de asociación (correlación) o modelamiento de relaciones entre variables (análisis de regresión). Otras técnicas de modelamiento incluyen anova, series de tiempo y minería de datos.
Ambas ramas (descriptiva e inferencial) comprenden la estadística aplicada.
Hay también una disciplina llamada estadística matemática, la que se refiere a las bases teóricas de la materia.
La palabra «estadísticas» también se refiere al resultado de aplicar un algoritmo estadístico a un conjunto de datos, como en estadísticas económicas, estadísticas criminales, entre otros.

TABLAS VARIABLES CUALITATIVAS

Una tabla estadística sirve para presentar de forma ordenada las distribuciones de frecuencias. Su forma general es la siguiente:
ModalidadFrecuencia AbsolutaFrecuencia RelativaPorcentajeFrecuencia Absoluta AcumuladaFrecuencia Relativa Acumulada
ci, xinipi=100 fi

Tabla para variable cualitativa
En el caso de variable cualitativa no se pueden calcular las frecuencias acumuladas pues no es posible establecer un orden en las clases dentro de la modalidad.Colocamos en la tabla aquellos valores que son independientes del lugar en que se pongan las modalidades.
Calculemos la tabla de frecuencias para una variable cualitativa.
Inactivos por tipos de inactividad declarada (miles de personas).
Modalidadnifipi
Estudiante522,60,138013,80%
Percibiendo una pensión de jubilación o unos ingresos de prejubilación712,30,188218,82%
Labores del hogar1.480,000,391039,10%
Incapacitado permanente265,90,07027,02%
Percibiendo una pensión distinta de la jubilación o prejubilación525,30,138813,88%
Otras situaciones279,50,07387,38%
3785,61100,00%

FUENTE: IEA. Explotación de la Encuesta de Población Activa del INE (Metodología 2005)

TABLAS VARIABLES CUANTITATIVAS

Una tabla estadística sirve para presentar de forma ordenada las distribuciones de frecuencias. Su forma general es la siguiente:

ModalidadFrecuencia AbsolutaFrecuencia RelativaPorcentajeFrecuencia Absoluta AcumuladaFrecuencia Relativa Acumulada
ci, xinipi=100 fi
}Tabla para variable cuantitativa discreta
En un centro de Educación secundara se pregunta a 40 alumnos por el número de hermanos que tienen, el resultado es el siguiente:

1,1,1,2,3,4,4,2,0,0,0,1,2,1,0,1,0,2,3,1,0,0,0,1,1,2,3,3,2,1,1,1,0,0,0,3,0,1,1,3
Ahora contamos, ordenamos los datos y construimos la tabla estadística.
  1. En la primara columa de la tabla colocaremos los distintos caracteres de la modalidad objeto de estudio ordenados de menor a mayor (esto será posible en los caracteres cuantitativos), en nuestro caso el número de hermanos.
  2. En la columna siguiente ponemos la frecuencia absoluta de cada carácter (contamos el número de veces que aparece cada valor). La suma de las frecuencias absolutas debe coincidir con el total de datos procesados.
  3. La tercera columna estará formada por las frecuencias relativas, cada frecuencia relativa se obtiene dividiendo la frecuencia absoluta correspondiente por el total de datos. La suma de todas las frecuencias relativas debe ser 1.
  4. En ocasiones se comprenden mejor los datos relativos dados en por ciento, para ello creamos una nueva columna en la que multiplicaremos las frecuencias relativas por 100, así tendremos el porcentaje de datos que se corresponden con dada modalidad.
  5. Finalmente crearemos dos columnas en las que reflejaremos las frecuencias absolutas y relativas acumuladas.
En nuestro ejemplo la tabla queda como sigue:
xinifipiNiFi
0120,330%120,3
1140,3535%260,65
260,1515%320,8
360,1515%380,95
420,055%401
401100%
HISTOGRAMA:
En estadística, un histograma es una representación gráfica de una variable en forma de barras, donde la superficie de cada barra es proporcional a la frecuencia de los valores representados, ya sea en forma diferencial o acumulada. Sirven para obtener una "primera vista" general, o panorama, de la distribución de la población, o la muestra, respecto a una característica, cuantitativa y continua, de la misma y que es de interés para el observador (como la longitud o la masa).
GRÁFICA CIRCULAR
Las gráficas circulares, también llamados gráficos de pastelgráficos de torta o gráficas de 360 grados, son recursosestadísticos que se utilizan para representar porcentajes y proporciones. El número de elementos comparados dentro de un gráfico circular puede ser de más de 4.
GRÁFICA DE BARRAS
Un diagrama de barras, también conocido como diagrama de columnas, es una forma de representar gráficamente un conjunto de datos o valores, y está conformado por barras rectangulares de longitudes proporcionales a los valores representados. Los gráficos de barras son usados para comparar dos o más valores. Las barras pueden orientarse verticalmente u horizontalmente
GRÁFICA DE PUNTOS:
El denominado gráfico de puntos permite mostrar apropiadamente a pequeños conjuntos de datos y tiene la gran ventaja de ser fácilmente construido a mano.
En este tipo de gráfico, la abcisa representa los valores de la variable estudiada y la ordenada la frecuencia de aparición de un valor en el conjunto de datos estudiado. 
Para la construcción de un gráfico de puntos, es necesario que el alumno conozca la representación de puntos en una recta graduada.
Por ejemplo, el siguiente gráfico representa una alumna de cuarto medio cuya altura es 162 cm.

PROBABILIDAD 
La probabilidad es un método por el cual se obtiene la frecuencia de un acontecimiento determinado mediante la realización de un experimento aleatorio, del que se conocen todos los resultados posibles, bajo condiciones suficientemente estables.
La teoría de la probabilidad se usa extensamente en áreas como la estadística, la física, la matemática, las ciencias y la filosofía para sacar conclusiones sobre la probabilidad discreta de sucesos potenciales y la mecánica subyacente discreta de sistemas complejos, por lo tanto es la rama de las matemáticas que estudia, mide o determina a los experimentos o fenómenos aleatorios.

Regla de la adición

La regla de la adición o regla de la suma establece que la probabilidad de ocurrencia de cualquier evento en particular es igual a la suma de las probabilidades individuales, si es que los eventos son mutuamente excluyentes, es decir, que dos no pueden ocurrir al mismo tiempo.
P(A o B) = P(A) U P(B) = P(A) + P(B) si A y B son mutuamente excluyente. P(A o B) = P(A) + P(B) − P(A y B) si A y B son no excluyentes.
Siendo: P(A) = probabilidad de ocurrencia del evento A. P(B) = probabilidad de ocurrencia del evento B. P(A y B) = probabilidad de ocurrencia simultánea de los eventos A y B.

Regla de la multiplicación

La regla de la multiplicación establece que la probabilidad de ocurrencia de dos o más eventos estadísticamente independientes es igual al producto de sus probabilidades individuales.
P(A y B) = P(A B) = P(A)P(B) si A y B son independientes. P(A y B) = P(A B) = P(A)P(B|A) si A y B son dependientes

Regla de Laplace

La regla de Laplace establece que:
  • La probabilidad de ocurrencia de un suceso imposible es 0.
  • La probabilidad de ocurrencia de un suceso seguro es 1, es decir, P(A) = 1.
Para aplicar la regla de Laplace es necesario que los experimentos den lugar a sucesos equiprobables, es decir, que todos tengan o posean la misma probabilidad.
  • La probabilidad de que ocurra un suceso se calcula así:
P(A) = Nº de casos favorables / Nº de resultados posibles
Esto significa que: la probabilidad del evento A es igual al cociente del número de casos favorables (los casos dónde sucede A) sobre el total de casos posibles.

Distribución binomial

La probabilidad de ocurrencia de una combinación específica de eventos independientes y mutuamente excluyentes se determina con la distribución binomial, que es aquella donde hay solo dos posibilidades, tales como masculino/femenino o si/no.
  1. Hay dos resultados posibles mutuamente excluyentes en cada ensayo u observación.
  2. La serie de ensayos u observaciones constituyen eventos independientes.
  3. La probabilidad de éxito permanece constante de ensayo a ensayo, es decir el proceso es estacionario.
Para aplicar esta distribución al cálculo de la probabilidad de obtener un número dado de éxitos en una serie de experimentos en un proceso de Bermnoulli, se requieren tres valores: el número designado de éxitos (m), el número de ensayos y observaciones (n); y la probabilidad de éxito en cada ensayo (p).
Entonces la probabilidad de que ocurran m éxitos en un experimento de n ensayos es:
P (x = m) = (nCm)(Pm)(1−P)n−m
Siendo: nCm el número total de combinaciones posibles de m elementos en un conjunto de n elementos.
En otras palabras P(x = m) = [n!/(m!(n−m)!)](pm)(1−p)n−m
Ejemplo. La probabilidad de que un alumno apruebe la asignatura Cálculo de Probabilidades es de 0,15. Si en un semestre intensivo se inscriben 15 alumnos ¿Cuál es la probabilidad de que aprueben 10 de ellos?
P(x = 10) = 15C10(0,15)10(0,85)5 = 15!/(10!(15−10)!)(0,15)10(0,85)5 = 7,68 * 10−6 Generalmente existe un interés en la probabilidad acumulada de "m o más " éxitos o "m o menos" éxitos en n ensayos. En tal caso debemos tomar en cuenta que: P(x < m) = P(x = 0) + P(x = 1) + P(x = 2) + P(x = 3) +....+ P(x = m − 1)
P(x > m) = P(x = m+ 1) + P(x = m+ 2) + P(x = m+3) +....+ P(x = n)
P(x ≤ m) = P(x = 0) + P(x = 1) + P(x = 2) + P(x = 3) +....+ P(x = m)
P(x ≥ m) = P(x = m) + P(x = m+1) + P(x = m+2) +....+ P(x = n)
Supongamos que del ejemplo anterior se desea saber la probabilidad de que aprueben:
a.− al menos 5
b.− más de 12
a.− la probabilidad de que aprueben al menos 5 es:
P(x ≥ 5) es decir, que:
1 - P(x < 5) = 1 - [P(x = 0)+P(x = 1)+P(x = 2)+P(x = 3)+P(x = 4)] =
1 - [0,0874 + 0,2312 + 0,2856 + 0,2184 + 0,1156] = 0,0618
Nota: Al menos, a lo menos y por lo menos son locuciones adverbiales sinónimas.
Ejemplo: La entrada al cine por lo menos tendrá un costo de 10 soles (como mínimo podría costar 10 soles o más).
b.− la probabilidad de que aprueben más de 12 es P(x > 12) es decir, que:
P(x > 12) = P(x = 13)+P(x = 14)+P(x = 15)
P(x > 12) = 1,47 *10−9 +3,722 *10−11 +4,38 *10−13 = 1,507 *10−9
La esperanza matemática en una distribución binomial puede expresarse como:
E(x) = np = 15(0,15)=2,25
Y la varianza del número esperado de éxitos se puede calcular directamente:
Var(x) = np(1−p)= 15(0,15)(1-0,15)=1,9125 Estadísticas y probabilidades, con sus diferentes diagramaciones como: diagrama de barras. diagrama de línea. y diagrama de círculos que se aplican de acuerdo al tipo de estadísticas y probabilidades matemáticas.